High Pressure Synthesis and Crystal Structure of a New Series of Perovskite-Like Compounds CMn_7O_{12} (C = Na, Ca, Cd, Sr, La, Nd)

B. BOCHU, J. CHENAVAS, J. C. JOUBERT, AND M. MAREZIO

Laboratoire des Rayons X—C.N.R.S., B.P. 166—Centre de Tri, 38042—Grenoble— Cedex, France

Received November 7, 1973

A new series of perovskite-like compounds CMn_7O_{12} have been synthesized under high pressure and high temperature conditions. C is a large divalent or trivalent cation such as Ca, Cd, Sr, La and Nd. The structures of the quenched materials have been determined from powder X-ray data. They are distortions of the NaMn₇O₁₂ cubic structure. The $[C^{2+}Mn_3^{3+}](Mn_3^{3+}Mn^{4+})O_{12}$ compounds are trigonal ($R\overline{3}$). The C²⁺ and Mn³⁺ as well as the Mn³⁺ and Mn⁴⁺ cations are ordered on the corresponding A and B sites of the perovskite structure, respectively. The $[C^{3+}Mn_3^{3+}]$ (Mn₃⁴⁺)O₁₂ compounds are monoclinic (I 2/m). In these compounds the order exists only in the A sites. It is shown that the lower symmetry may be the result of a cooperative Jahn–Teller effect of the Mn³⁺ cations occupying the B sites.

Introduction

Na Mn_7O_{12} (1) is a perovskite-like compound in which the sodium and 3/7 of the manganese atoms occupy the A-sites of the perovskite structure, while the rest of the manganese atoms occupy the B-sites. Thus its formula can be written as follows:

$$[NaMn_{3}^{3+}](Mn_{2}^{3+}Mn_{2}^{4+})O_{12}$$

A-sites B-sites

The structure was found to be cubic at ambient temperature a = 7.3036 Å, space group Im3, and 2 formulae (NaMn₇O₁₂) per unit cell. The Na⁺¹ and the Mn⁺³ corresponding to the A cations occupy 2 crystallographically independent sites. The sodium atoms are surrounded by 12 equidistant oxygen atoms arranged as a slightly distorted icosahedron. The Mn³⁺ cations are also surrounded by 12 oxygen atoms. However, the distortion of this polyhedron is so large that only 8 oxygen atoms can be considered as first neighbours. Four of these 8 oxygens are very close and form a square while the others form a rectangle perpendicular to

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain the square. As far as we know this is the first example of an 8-coordinated Jahn-Teller Mn^{3+} cation. The octahedral B-sites are occupied at random by Mn^{3+} and Mn^{4+} cations in equal proportion. The doubling of the perovskite unit cell is due to the order on the A-sites and to the distortion of the oxygen sublattice.

Because in the NaMn₇O₁₂ compound the B-sites of the perovskite structure are occupied by Mn⁴⁺ and Mn³⁺ cations, it was thought that one could synthesize CMn₇O₁₂ compounds with C being a large divalent and trivalent cation. The valence variation would be balanced by a change in the Mn³⁺/Mn⁴⁺ ratio of the cations occupying the octahedral sites. This paper reports the high pressure synthesis and crystal structures of the Ca, Cd, Sr, La and Nd compounds.

Experimental

The apparatus and the procedure of the high pressure experiments have been described in a preceding report (2). The experimental conditions used for the preparations of the

TABLE	L
-------	---

EXPERIMENTAL CONDITIONS

C cation	Starting materials	High pressure conditions (1 hr)	Phases present in the quenched products
Ca ²⁺	$CaO + 3Mn_2O_3 + MnO_2$	80 kbar 1000°C	$CaMn_7O_{12} + trace of Mn_2O_3$
	$CaO + 2Mn_2O_3 + 3MnO_2$	80 kbar 1000°C	$CaMn_7O_{12} + trace of MnO_2$
Cd ²⁺	$CdO + 3Mn_2O_3 + MnO_2$	80 kbar 1000°C	$CdMn_7O_{12}$ + trace of an X un- known phase
Sr ²⁺	$Sr(OH)_2, 8H_2O + 3Mn_2O_3 + MnO_2$	50 kbar 1000°C	$SrMn_7O_{12} + traces of Mn_2O_3$ and of a Y unknown phase
La ³⁺	$La_{2}O_{3} + 7Mn_{2}O_{3}$	40 kbar 1000°C	LaMn ₇ O ₁₂
Nd ³⁺	$Nd_2O_3 + 7Mn_2O_3$	40 kbar 1000°C	NdMn ₇ O ₁₂ (poorly crystallized)
Nd ³⁺	$Nd_2O_3 + 7Mn_2O_3$	80 kbar 1000°C	NdMn ₇ O ₁₂ (well crystallized)

different compounds are reported in Table I. The powder X-ray photographs of the quenched materials were taken with a 360 mm circonference Guinier focusing camera, FeK α radiation, ($\lambda_{\alpha} = 1.9373$ Å), and KCl as an internal standard. The lattice parameters of each compound were obtained by least-squares refinement.

Results

It is readily seen from the powder photographs that the CMn₇O₁₂ compounds are all NaMn₇O₁₂-like and that their symmetry is lower than cubic when C is a large divalent or trivalent cation. The powder patterns were indexed on a trigonal cell for the $C^{2+}Mn_7O_{12}$ compounds whereas they were indexed on a monoclinic cell for the C3+Mn7O12 compounds. A comparison between the observed and calculated interplanar spacing together with the observed relative intensities is given in Table II for NaMn₇O₁₂, CaMn₇O₁₂, and LaMn₇O₁₂. The lattice parameters along with the space groups and the number of molecules per unit cell of all compounds prepared until now, are reported in Table III.

The systematic absences among the (hkl)reflections of the trigonal patterns were $-h + k + l \neq 3n$. These absences indicated a rhombohedral space group. The fact that the only trigonal subgroups of the cubic m3 point group are 3 and 3, led us to choose R3 and R3 as possible space groups for the $C^{2+}Mn_7O_{12}$ structure. Since the structure of $NaMn_7O_{12}$ is centrosymmetrical we have decided to describe the structure of $C^{2+}Mn_7O_{12}$ in the $R\overline{3}$ space group. The matrix of transformation between the cubic and trigonal cell expressed in terms of hexagonal axes is:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}_{\operatorname{Hex}} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & \overline{1} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{\operatorname{cubic}} \Delta = \frac{3}{2}.$$

The atomic arrangement of $C^{+2}Mn_7O_{12}$ calculated from that of cubic $NaMn_7O_{12}$ is given in Table IV.

The systematic absences among the (hkl)reflections of the monoclinic patterns of the $C^{3+}Mn_7O_{12}$ compounds are $h + k + l \neq 2n$, which lead to the possible space groups I2/m, I2, and Im. It was decided to describe this structure in a body-centered space group rather than in the standard C-centered one because with the *I*-cell it is easier to understand the relationship between the cubic structure and the monoclinic distortion. In Table IV the calculated atomic arrangement is reported for the centrosymmetrical I2/m space group.

As can be seen in Table III the lattice parameters a and c for each monoclinic cell are equal. On the powder films one could not distinguish any splitting between the (hkl)and (lkh) reflections. A consequence of this equality is that there exists an orthorhombic

TABLE II

OBSERVED AND CALCULATED INTERPLANAR SPACINGS IN NAMN7O12, CAMN7O12, AND LAMN7O12 COMPOUNDS

CaM	$CaMn_3^{3+}(Mn_3^{3+}Mn^{4+})O_{12}$				$NaMn_3^{3+}(Mn_2^{3+}Mn_2^{4+})O_{12}$				LaMn ₃ ³⁺ (Mn ₄ ³⁺)O ₁₂			
hkl	dobs	dcalcd	I _{obs} ^a	h k l	dobs	d_{calcd}	Iobs ^a	h k l	dobs	dcalcd	I _{obs} ⁴	
110	5.217	5.230 5.196	vw) w	110	5.166	5.165	w	10T 011	5.379 5.266	5.374 5.264	vw M	
021	3.689	3.686	w	200	3.650	3.652	w	002 (21]	3.762 3.082	3.757 3.081	vw w	
211	3.014	3.013	w	211	2.981	2.982	w		3.040	3.041	W	
220 202	2.617 2.597	2.615 2.598	vS) vS)	220	2.581	2.582	vS	(12) (202) (202)	2.686 2.628	2.687 2.627	S vS	
131 122	2.338 2.327	2.336 2.327	M M	310	2.310	2.310	М	$ \begin{cases} 1 0 3 \\ 0 1 3 \\ 1 0 3 \end{cases} $	2.393 2.371 2.361	2.392 2.372 2.360	M M vw	
401	2.132	2.133	w)	222	2.109	2.108	w	(031) (222) (222)	2.339 2.172 2.139	2.337 2.172 2.140	M W W	
140	1.9763	1.9766	м)					$ \begin{pmatrix} 2 \\ 3 \\ 3 \\ 2 \\ 1 \end{pmatrix} $	2.024 2.007	2.025 2.007	w W	
3 1 2 1 1 3	1.9702	1,9693	M	321	1.952	1.952	Μ	23Ī 123	1.9892	1.9905 1.9880	М	
042	1 8434	1 8430	S S	400	1 825	1 826	s	(132 ₍ 004	1.9782 1.8786	1.9780 1.8785	vw S	
330	1 7474	1.7432	w)	411)	1.025	1.020	5	(040 (114	1.8445 1.7785	1.8440 1.7782	S vw	
051) 303	1.7322	1.7420 1.7319	w }	3 3 0)	1.722	1.722	vw	$ \begin{cases} 1 1 4 \\ 1 4 1 \end{cases} $	1.7607 1.7404	1.7604 1.7399	vw vw	
2 4 1 2 2 3	1.6529 1.6440	1.6527 1.6441	w w)	420	1.633	1.633	vw	204	1.6639	1.6652	vw	
511 104	1.5751 1.5620	1.5759 1.5620	vw)	332	1.557	1.557	vw	233	1.6001	1.5995	vw	
600 422	1.5101 1.5062	1.5097 1.5064	s}	422	1.490	1.491	vS	$ \begin{cases} 4 2 \overline{2} \\ 2 4 \overline{2} \end{cases} $	1.5406 1.5189	1 .540 6 1.5177	S S	
024	1.4968	1.4967	s)					(242)	1. 5097 1.4878	1.5093 1.4882	M vw	
				431)				015 43I	1.4723 1.4685	1.4726 1.4691	vw vw	
				510)				134 143	1.4593 1.4527	1.4591 1.4531	vw vw	
								(051	1.4476	1.4475	vw	

" vw (very weak); w (weak); M (medium); S (strong); vS (very strong).

cell related to the monoclinic one by the matrix:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}_{\text{Orthor.}} = \begin{pmatrix} 1 & 0 & \overline{1} \\ 1 & 0 & 1 \\ 0 & \overline{1} & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{\text{mon.}} \Delta = 2.$$

which can fully index the powder pattern.

However, the possible point groups mmm, 2mm, and 222 corresponding to the orthorhombic cell are not subgroups of the cubic m3, because two of the three orthorhombic axes $(a_o \text{ and } c_o)$ are along the diagonals of the ac plane of the cubic cell. The (101) and ($\overline{101}$) planes and the [101] and [$\overline{101}$] axes of the

TABLE	ш

LATTICE PARAMETERS AND SPACE GROUPS OF CMN7O12 COMPOUNDS

	C ⁺¹ Mn ₇ O ₁₂ cubic	C ⁺² Mn ₇ O ₁₂ trigonal	C ⁺³ Mn ₇ O ₁₂ monoclinic
Na+	a = 7.3036 Å $(a_{Rh} = 6.325 \text{ Å}; \alpha = 109.47^{\circ})^*$ $V = 389.6 \text{ Å}^3$		
Cd ²⁺		$\begin{cases} a = 6.394 \text{ Å } a_{\text{hex}} = 10.453 \text{ Å} \\ \alpha = 109.65^{\circ} c_{\text{hex}} = 6.336 \text{ Å} \\ V = 199.8 \text{ Å}^3 \end{cases}$	
Ca ²⁺		$a = 6.401 \text{ Å } a_{\text{hex}} = 10.464 \text{ Å}$ $\alpha = 109.65^{\circ} c_{\text{hex}} = 6.343 \text{ Å}$ $V = 200.5 \text{ Å}^{3}$	
Sr ²⁺		$\begin{cases} a = 6.430 \text{ Å } a_{\text{hex}} = 10.509 \text{ Å} \\ \alpha = 109.61^{\circ} c_{\text{hex}} = 6.384 \text{ Å} \\ V = 203.5 \text{ Å}^3 \end{cases}$	
La ³⁺			$\begin{cases} a = 7.516(2) \text{ Å} \\ b = 7.376(2) \text{ Å} \\ c = 7.516(2) \text{ Å} \\ \beta = 91.30^{\circ} \end{cases} = 416.6 \text{ Å}^{3}$
Nd ³⁺			$\begin{cases} a = 7.504(2) \text{ Å} \\ b = 7.366(2) \text{ Å} \\ c = 7.504(2) \text{ Å} \\ \beta = 91.18^{\circ} \end{cases}$
* Prin	nitive cell.		(p) 22.20

orthorhombic cell are not symmetry elements of the m3 point group. Therefore, the symmetry of C³⁺Mn₇O₁₂ compounds is truly monoclinic.

Discussion

In the cubic $[NaMn_3^{3+}](Mn_2^{3+}Mn_2^{4+})O_{12}$ structure the Mn³⁺ and Mn⁴⁺ ions occupying the octahedral sites are completely disordered at room temperature. As determined by X-ray diffraction, the point symmetry of these sites is $\overline{3}$, therefore the octahedra are trigonally distorted and the 6 Mn-O distances are equal. In Ref. (1) it was speculated that the 6 coordinated Mn³⁺ were in the low-spin state. The argument was based solely on the fact that the average octahedral Mn-O distance for the octahedral sites was found to be too small when compared with the reported $[Mn^{3+}(h.s.)-O + Mn^{4+}-O]/2$ value (3). The distortions of the CMn₇O₁₂ compounds with C being a divalent or a trivalent cation and the preliminary results at low temperature on $NaMn_7O_{12}$ seem to indicate that Mn^{3+} ions

occupying the octahedral sites are in the high spin state.

In the trigonal $[C^{2+}Mn_3^{3+}](Mn_3^{3+}Mn^{4+})O_{12}$ compounds 75% of the B-sites of the perovskite structure are occupied by Mn³⁺ cations and 25% by Mn⁴⁺ cations. It seems logic to assume that the 9d and the 3b positions of the $R\bar{3}$ space group are occupied by the Mn³⁺ and the Mn^{4+} cations, respectively. The 9d positions have a I point symmetry, therefore they can be Jahn-Teller distorted and accommodate the Mn^{3+} cations in the high spin state. The 3b positions have the same point symmetry as the equivalent sites in the cubic structure namely, 3. They do not need to be further distorted as they accommodate Mn⁴⁺ ions. The $C^{2+}Mn_7O_{12}$ are perovskite-like compounds in which an order 1:3 is established on the A-sites as well as on the B-sites. As far as we know it represents the first example where an order is established on both sites of the perovskite structure. As can be seen from Table III the lattice distortion on going from the cubic structure of NaMn₇O₁₂

TABLE IV

Compounds	[Ca	Mn ₃ ³⁺](Mn ₃ ³⁺ Mn ⁴⁺)C	$[NaMn_3^{3+}](Mn_2^{3+}Mn_2^{4+})O_{12}$				$[LaMn_3^{3+}](Mn_4^{3+})O_{12}$		
Number of molecules per unit cell	3	Hexagonal axes	RŽ	2		Im3	2		12/m
С	3 <i>a</i>	(0 0 0)	3	2 <i>a</i>	(0 0 0)	<i>m</i> 3	2 <i>a</i>	(0 0 0)	2/ <i>m</i>
							(2b	(0 1/2 0)	2/ <i>m</i>
Mn ³⁺	9e	(1/2 0 0)	Ī	6b	(0 1/2 1/2)	mmm	$\{2c$	(0 0 1/2)	2/m
							2 <i>d</i>	(0 1/2 1/2)	2/m
(Mn ³⁺)	9d	(1/2 0 1/2)	ī)	9.	(1/4 1/4 1/4)	7	(4e	(1/4 1/4 3/4)	ī
(Mn ⁴⁺)	3 <i>b</i>	(0 0 1/2)	3)	oc	(1/4 1/4 1/4)	3	ĺ4 <i>f</i> −	(1/4 1/4 1/4)	I
, ,							{ 4 <i>i</i>	$(x_1 \ 0 \ z_1)$	m
								$x_1 \sim 0.31$	
	(18f	(x y z)	1					$z_1 \sim 0.18$	
		$x \sim 0.23$					4 <i>i</i>	$(x_2 \ 0 \ z_2)$	m
	1	$y \sim 0.27$						$x_2 \sim 0.31$	
	1	$z \sim 0.09$			(x y 0)			$z_2 \sim -0.18$	
0	ł			24g	x = 0.1828	m	18 <i>j</i>	$(x_3 y_3 z_3)$	1
	18f	(x y z)	1		y = 0.3132			$x_3 \sim 0.0 \ z_3 \sim 0.31$	
		$x \sim 0.35$]	$y_3 \sim 0.18$	
		$y \sim 0.52$					8j	$(x_4 \ y_4 \ z_4)$	1
	l	$z \sim 0.34$						$x_4 \sim 0.18 \ z_4 \sim 0.0$	
							}	$y_4 \sim 0.31$	

EXPERIMENTAL ATOMIC ARRANGEMENT FOR	$N_{A}M_{N_{7}}O_{12}$ and the Calculated	ONE FOR $CaMn_7O_{12}$ and $LaMn_7O_{12}$
-------------------------------------	---	---

to the trigonal of $CaMn_7O_{12}$ consists in a slight opening of the angle α . It is 109.47° in the primitive cubic cell and 109.65° in the rhombohedral one.

In the $[C^{3+}Mn_3^{3+}](Mn_4^{3+})O_{12}$ compounds, the distortion to the monoclinic symmetry is due to the fact that all the octahedral sites are now occupied by high spin Mn^{3+} Jahn-Teller cations. In this structure all the octahedral sites have a \overline{I} point symmetry. The monoclinic lattice distortion consists in the opening of the β angle and in the shortening of the parameter along the twofold axis.

As the symmetry lowers from cubic to trigonal and from cubic to monoclinic, also the sites containing the C cations and the 8 coordinated Jahn-Teller Mn^{3+} cations become more distorted. The point symmetry of the sites occupied by the C cations lowers from m3 to 3 and from m3 to 2/m on going from $C^{+1}Mn_7O_{12}$ to $C^{2+}Mn_7O_{12}$ and from $C^{+1}Mn_7O_{12}$ to $C^{3+}Mn_7O_{12}$, respectively. In

the same way, the point symmetry of the sites occupied by the Mn^{3+} cations lowers from *mmm* to I and from *mmm* to 2/m.

Preliminary results show that the cubic Na Mn_7O_{12} compound undergoes a phase transition at ~180°K and that this transition is accompanied by a lowering of the cubic symmetry. This could be the result of a crystallographic order taking place among the Mn^{4+} and Mn^{3+} cations in the octahedral sites.

These results seem to indicate that in the CMn_7O_{12} compounds all the Mn^{3+} cations are in the high-spin state. The discrepancy between the experimental octahedral Mn-O average distance (1.946 Å) and the calculated value (1.98 Å) in $NaMn_7O_{12}$ can be due to the inaccuracy of the ionic radius of the high spin Mn^{3+} cations. This value has been deduced (3) from well refined structures such as Mn_2O_3 (4). In this orthorhombic compound there are 5 crystallographically independent

octahedral sites for the Mn^{3+} cations. Two of these octahedra are less apically elongated than the other 3. The average Mn-O distances of these first 2 octahedra are 2.003 and 2.002 Å, whereas those of the other 3 are 2.043, 2.042, and 2.043 Å, respectively. These values indicate that the average Mn-O distance varies considerably with the distortion of the oxygen octahedron and that it becomes larger as the distortion increases. In [NaMn₃] $(Mn_2^{3+}Mn_2^{4+})O_{12}$ the octahedral sites have a high local symmetry and the 6 Mn-O distances are equal. Consequently, one should expect a smaller $Mn^{3+}-O$ distance than the value calculated from the jonic radii.

LaMn₇O₁₂ and NdMn₇O₁₂ represent new compounds in the binary systems La_2O_3/Mn_2O_3 and Nd₂O₃/Mn₂O₃. Until now, only the 1:1 perovskite-like compounds LaMnO₃ and NdMnO₃ were known. High

pressure is needed to synthesize the 1:7 compounds because they contain 3/7 of the Mn³⁺ cations in high-coordinated sites. The relative volume variation between the LaMnO₃ + $3Mn_2O_3$ mixture and LaMn₇O₁₂ is $-4.8 \frac{9}{6}$.

Acknowledgments

We would like to thank R. Argoud and M. Perroux for technical assistance and the D.R.M.E. for supporting part of this work.

References

- M. MAREZIO, P. D. DERNIER, J. CHENAVAS, AND J. C. JOUBERT, J. Solid State Chem. 6, 16 (1973).
- 2. J. CHENAVAS. Thèse, Grenoble, 1973. C.N.R.S.-A.O. No. 8691.
- 3. R. D. SHANNON AND C. T. PREWITT, Acta Cryst. **B25**, 925 (1969); **B26**, 1046 (1970).
- 4. S. GELLER, Acta Cryst. B27, 821 (1971).